๐Ÿ“— -> Lecture Date: Name


[Lecture Slide Link]

๐ŸŽค Vocab

โ— Unit and Larger Context

Small summary

โœ’๏ธ -> Scratch Notes

p=0.4, q=0.8
States:

  • Active Nodes
    • Send (S): p=0.4
    • Not Send (NS): 1-p
  • Inactive Nodes
    • Inactive: 1-q = 1-0.8 = 0.2
    • Active & Send: qp
    • Active & Not Send: q(1-p)

Epoch i = time i
= number of collisions at epoch i
= number of active notes at the end of epoch i

Assume given
Probability of 0, 1, or 2 collision?

N1N2P
SSp^212
SNSp(1-p)01 (N2)
NSSp(1-p)01 (N1)
NSNS(1-p)^202
Same table
N1N2p
IAS(1-q)p00
IANS(1-q)(1-p)01 (N2)
ASSqp * p12
ASNSqp(1-p)01 (N2)
ANSSq(1-p)p01 (N1)
ANSNSq(1-p)(1-p)02
You can't use 'macro parameter character #' in math mode\displaylines{ P(A|B) = \frac{P(A \cap B)}{P(B)} \\ P(x_2 | x_1= 1)= \frac{P(x_2 = 1 \cap x_1 = 1)}{P(x_1)} \\ P(x_1 = x_2) = P(x_1 = x_2 = 0) + P(x_1 = x_2 = 1) + P(x_1 = x_2 = 2) \\ 2p(1-p)\;[2pq(1+p) + (1-p)(1-q)] \\ + (p^2 + (1-p)) \; [p^2 + (1-p)^2] \\\\ \text{Note that: }\; 2p(1-p) = P(x_1=1) \\ [2pq(1+p) + (1-p)(1-q)] = P(x_2 = 1| x_1 = 1) \\ (p^2 + (1-p)) = P(x_1 = 2) \\ [p^2 + (1-p)^2] = P(x_2 = 2 | x_1 = 2) \\\\ P(c=0 \cap x_1=x_2) = a + b \\ P(c=0 \cap x_1=x_2 = 1) = 2p(1-p)\;[2pq(1+p) + (1-p)(1-q)] = a\\ P(c=0 \cap x_1=x_2 = 2) = (1-p)^2(1-p)^2 = b\\\\ P(c=0 | x_1 =x_2) \\ P(c=1 | x_1 =x_2) \\ P(c=2 | x_1 =x_2) \\ }$$ ## ๐Ÿงช-> Example - List examples of where entry contents can fit in a larger context ## ๐Ÿ”— -> Related Word - Link all related words